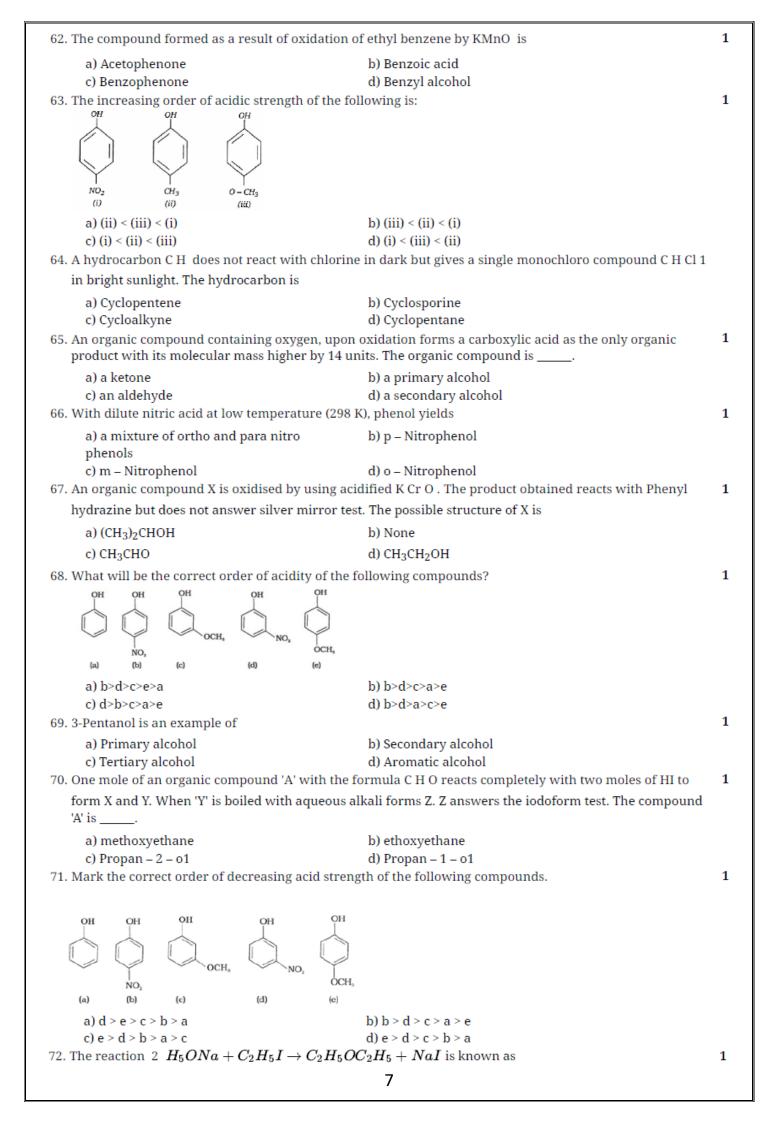
	ic Energy Central School No. 4 Rawatbhata Choice Question Examination (October 2019)	
1	jects: Physics, Chemistry and Biology MM: 120	
Name:	Class/Sec:	
	Invigilator's Sign:	
Instruction: 1) Fill & c	darken roll number field correctly on OMR Sheet. In case	e
of any error, OMR An	swer Sheet will be not be read by the OMR Scanner.	
2) Darken the most su	itable option no. on OMR Answer Sheet.	
3) There is no negative	e marking.	
	Physics	
1. An inductance L having a r quality factor of the induct	esistance R is connected to an alternating source of angular frequency w. The ance is:	1
a) $\frac{R}{wL}$	b) $\left(\frac{wL}{R}\right)^2$	
c) $\left(\frac{R}{mL}\right)^{\frac{1}{2}}$	d) $\frac{\omega L}{R}$	
	with a.c. source, the current lags behind emf by phase angle of	1
a) $\frac{\pi}{2}$	b) $\frac{\pi}{4}$	
c) 2π	d) π	
	a A and length l of a solenoid. The magnetic energy per unit volume is	1
a) $\frac{1}{2\mu_0}B^2A$	b) $\frac{3}{2\mu_0} B^2 A l$	
c) $rac{1}{2\mu_0}B^3Al$	d) $\frac{B^2}{2\mu_0}$	
4. On a cylindrical rod two co if the inductance of each co	ils are wound one above the other. What is the coefficient of mutual inductance oil os 0.1H?	1
a) 0.15H c) 0.20H	b) 0.05H d) 0.10H	
5. Assume that a motor in wh When the motor is running	ich the coils have a total resistance of 10Ω is supplied by a voltage of 120 V. If at its maximum speed, the back emf is 70 V. Current in the coils when the en it has reached maximum speed are	1
a) 16 A, 5 At	b) 14 A, 5 A	
c) 12 A, 4 A 6. If two coils of inductances]	d) 12 A, 5 A ${f L}_1$ and ${f L}_2$ are linked such that their mutual inductance is M, then	1
a) M = $L_1 - L_2$	b) M = $L_1 + L_2$	-
c) $M=L_1 imes L_2$	d) The maximum value of M is $\sqrt{({ m L}_1 { m L}_2)}$	
	e the direction of induced current in the situations described by the Figure	1
a. A wire of irregular shap	e turning into a circular shape;	
* * * * * * *		
(a) b. A circular loop being de are	formed into a narrow straight wire. The directions for (a) and (b) respectively	


a) anti-clockwise, clockwise b) clockwise, clockwise c) clockwise, anti-clockwise d) anti-clockwise, anti-clockwise 8. A step up transformer operates on a 230 volt line and a load current of 2 ampere. The ratio of the primary 1 and secondary windings is 1:25. The current in the primary is: a) 15 amp b) 25 amp c) 12.5 amp d) 50 amp 9. A horizontal ring of radius r spins about it's axis with an angular velocity ω in a uniform magnetic field of 1 magnitude B. Emf induced in the ring is a) $r^2 \omega B$ b) $\pi r^2 \omega B$ c) $\pi r^3 \omega B$ d) Zero 10. A line charge λ per unit length is lodged uniformly onto the rim of a wheel of mass M and radius R. The 1 wheel has light non-conducting spokes and is free to rotate without friction about its axis (see figure). A uniform magnetic field extends over a circular region within the rim. It is given by, $B=B_0\hat{k}$ $(r \le a; a < R) = 0$ (otherwise) What is the angular velocity of the wheel after the field is suddenly switched off? а MRMR11. A straight wire carries a current of 50 A and the loop as in figure is moved to the right with a constant 1 velocity, ${f v}=10{f m/s}$. Take a $=0.1{f m}$ and assume that the loop has a large resistance. Induced emf in the loop at the instant when x = 0.2 m is a) $2.3 \times 10 - 5V$ b) $2.6 \times 10^{-5} V$ c) $2.0 \times 10 - 5V$ d) $1.7 \times 10^{-5} V$ 12. Two coils are placed close to each other. The mutual inductance of the pair of coils depends upon: 1 a) the rates at which currents are changing b) the materials of the wires of the coils in the two coils c) relative position and orientation of the d) the currents in the two coils two coils 13. For a coil having L = 2×10^3 H, current flows at the rate of 10^{-3} A/s. The emf induced is: 1 a) 3 V b) 2 V c) 4 V d) 1 V 14. When a coil is joined to a cell,current grows with a time constant au The current will reach 10% of it's 1 steady-state value in time b) $au \ln \left(10/9
ight)$ a) τ c) $\tau \ln (0.9)$ d) 2τ 2

perpendicular to the plane and extends from $\mathbf{x} =$ possesses substantial resistance r. Consider the s to $\mathbf{x} = 2\mathbf{b}$, and is then moved back to $\mathbf{x} = 0$ with $\mathbf{x} = \mathbf{x} = 0$ with $\mathbf{x} = \mathbf{x} = \mathbf{x} = \mathbf{x}$ a) Blb, zero	b) Blx, -Bv	1
c) Bl, -Blv	d) Bx, -Blv	
16. At $t = 0$, an inductor of zero resistance is joined	-	1
decreases with a time constant $ au$ The emf across		
a) $ e = Ee^{-t/\tau}$	b) $arepsilon \left(1-\mathrm{e}-\mathrm{t}/ au ight)$ d) $arepsilon \mathrm{e}-2\mathrm{t}/ au$	
c) $2\varepsilon e - t/ au$		1
-	60° with the plane of the coil; it decreases at 0.200 T/s .	T
Magnitude of induced emf is		
a) 0.435 V	b) 0.455 V	
c) 0.495 V	d) 0.475 V	
18. What should be the core of an electromagnet?		1
a) none of above	b) soft iron	
c) hard iron	d) rusted iron	
19. A capacitor of capacity C has reactance X. If capa be:	citance and frequency are doubled, the reactance would	1
a) 4X	b) 2X	
c) $\frac{X}{2}$	d) $\frac{X}{4}$	
	apacitor. A voltage of amplitude 170 V and frequency 60.0	1
Hz applied across the capacitor is to produce a cu Capacitance required is	urrent amplitude of 0.850 A through the capacitor.	
a) 17.8 $\mu { m F}$	b) 13.3 $\mu { m F}$	
c) 15.3 $\mu { m F}$	d) 23.4 μ F	
-	${f F}$ capacitor in series is connected to a 230 V, 50 Hz supply. e powers transferred to the inductor and to the capacitor	1
a) 10 W, 10 W	b) 0 W,0 W	
c) 10 W, 10 W	d) 20 W, 10 W	
22. A sinusoidal voltage of peak value 283 V and free 3 Ω , L = 25.48 mH, and C = 796 μ F. Power dissipation	juency 50 Hz is applied to a series LCR circuit in which R = ated in the circuit; and the power factor are	1
a) 4800 W, 0.6	b) 4000 W, 0.4	
c) 3800 W, 0.6	d) 4400 W, 0.6	
-	the resistor is 30.0 V, across the capacitor it is 90.0 V, and	1
across the inductor it is 50.0 V. Rms voltage of the a) 55.0 V	b) 50.0 V	
c) 60.0 V	d) 65.0 V	
	a 5.0 $\mu m F$ capacitor, and a variable frequency ac source r elements together to form a series circuit. Frequency at mulitude are	1
a) 123 Hz, 15mA	b) 143 Hz, 35mA	
c) 113 Hz, 25mA	d) 113 Hz, 15mA	
	$m{l}$ is connected to a 240 V, 50 Hz ac supply.Maximum current	1
	3	

a) 1.62 A, 3.82 ms	b) 2.82 A , 3.82 ms	
c) 1.82 A, 3.2 ms	d) 1.82 A , 2.82 ms	
26. For high frequency capacitor offers:		1
a) Less resistance	b) More resistance	
c) None of these	d) Zero resistance	1
27. Domestic power supply in India is	1	1
a) 230 V, 50 Hz c) 24 V DC	b) 416 V, 60 Hz d) 110 V, 60 Hz	
28. You have a special light bulb with a very delicate	e wire filament. The wire will break if the current in it ever argest root-mean-square current you can run through this	1
a) 1.26 A	b) 1.46 A	
c) 1.06 A	d) 1.56 A	
29. An inductor with L = 9.50 mH is connected acros angle for the source voltage relative to the current	s an ac source that has voltage amplitude 45.0 V. Phase nt is	1
a) 120 $^{\circ}$	b) 90°	
c) 180°	d) -90°	
30. A series circuit has an impedance of 60 ohm and the current	a power factor of 0.720 at 50.0 Hz. The source voltage lags	1
power factor?	tor, should be placed in series with the circuit to raise its	
b. What size element will raise the power factor		
a) inductor, 0.193 H	b) inductor, 0.173 H	
 c) inductor, 0.153 H 31. The voltage across the terminals of an ac power amplitude is V = 45.0 V. Root-mean-square potential 	d) inductor, 0.133 H supply varies with time according to $Vcos\omega t$. The voltage tial difference is	1
a) 35.8 V	b) 31.8 V	
c) 37.8 V	d) 33.8 V	
32. An LC circuit contains a 20 mH inductor and a 50 resistance of the circuit is negligible. Natural free	, ,	1
a) 159 Hz	b) 129 Hz	
c) 139 Hz	d) 149 Hz	
33. The phase difference between the current and ve	oltage at resonance is:	1
a) 0	b) $-\pi$	
c) π	d) $\frac{\pi}{2}$	
	and ${ m X_L}$ = 500.0 $\Omega.$ The average power consumed in the	1
resistor is 60.0 W. What is the power factor of the	e circuit?	
a) 0.881	b) 0.831	
c) 0.931	d) 0.911	-
amplitude is V = 45.0 V. Average potential differe a) 35.8 V	supply varies with time according to $Vcos\omega t$. The voltage ence between the two terminals of the power supply is b) 33.8 V	1
c) 37.8 V	d) zero V	
-	and X_L = 500.0 $\Omega.$ The average power consumed in the	1
resistor is 60.0 W. rms voltage of the source is		
a) 151 V	b) 141 V	
with an ac source of angular frequency 650 rad/s	and voltage amplitude 22.5 V, a 75.0 Ω resistor, and an cross section 0.500 cm in diameter, and carries 125 coils	1
a) 3.99 $ imes 10^7 \mathrm{rad/s}$ c) 3.79 $ imes 10^7 \mathrm{rad/s}$	b) $3.59 \times 10^7 rad/s$ d) $3.89 \times 10^7 rad/s$	

Frequency of the source that results in a curren	ss an ac source that has voltage amplitude 45.0 V. It amplitude of 3.90 A is	1
a) 180 Hz	b) 129 Hz	
	d) 150 Hz 2300 V to a step-down transformer with its primary n the secondary in order to get output power at 230 V is	1
a) 325 c) 425	b) 380 d) 400	
40. A series circuit consists of an ac source of varia	ble frequency, a 115.0 Ω resistor, a 1.25 μF capacitor, and a en the angular frequency of the ac source is adjusted to	1
a) 146.0 Ω c) 166.0 Ω	b) 176.0 Ω d) 156.0 Ω	
(Chemistry	
41. Decomposition of benzene diozonium chloride	by using Cu Cl /HCl to form chlorobenzene is	1
a) Wurtz – Fittig reaction c) Sandmeyer's reaction	b) Friedel – Crafts reaction d) Finkelstein reaction	
42. Arrange the following in the increasing order of I^-, Cl^-, Br^-	of nucleophilicity:	1
a) $Cl^- < Br^- < I^-$ c) $Br^- < Cl^- < I^-$	b) $I^- < Cl^- < Br^-$ d) $I^- < Br^- < Cl^-$	
	a) $I < DT < C l$ carbon atoms, Wurtz reaction is not preferred because	1
a) a lot of reaction mixture goes wasted	b) a mixture of three different alkyl halides has to be used	
c) a mixture of four different alkyl halides	d) a mixture of two different alkyl halides	
has to be used	has to be used	
44. Anisole reacts with a mixture of concentrated s paranitroanisole	sulphuric and nitric acids to yield a mixture of ortho and	1
$\bigcup_{H_2 > O_4}^{OCH_3} \bigcup_{H_2 > O_4}^{OCH_3} + \bigcup_{H_2 > O_4}^{OCH_3} +$		
2-Nitroanisole 4-Nitroanisole		
a) None of these c) major product is paranitroanisole	b) minor product is orthonitroanisole d) ortho and para in equal amounts.	
45. p – Dichlorobenzene has than tho		1
a) higher melting point and lower solubility c) lower melting point and higher solubility	b) low melting point and low solubility d) higher melting point and higher	
46. Name the following aryl halide as per the IUPA	solubility .C.system	1
CH ₃		
$\operatorname{CH}_2 \xrightarrow{2} \operatorname{CH} \xrightarrow{3} \operatorname{CH}_3$		
CI		
a) 1 chlorohonzyl 2 mothyl propano	b) 4 - chloro - 1 - (2 - methyl propyl) benzene	
a) 1 - chlorobenzyl - 2 - methyl propane		
 c) 1 - chloro - 4 - (2 - methylpropyl) benzene 47. Chloroform is stored in closed dark coloured b 	d) 4-(methylpropyl)-1-chlorobenzene ottles completely filled because it	1

c) can change its colour in presence of light and get spoilt by action of light	d) gets slowly oxidised by air in the presence of light	
48. IUPAC name of (CH) CCl	1 0	1
a) n – butyl chloride	b) 3 – chloro butane	
c) t – butyl chloride 49. The best method for the conversion of an alcol	d) 2 – chloro 2 methyl propane nol into an alkyl chloride is by treating the alcohol with	1
a) SOCl ₂ in presence of pyridine	b) PCl ₃	-
c) Dry HCl in the presence of anhydrous	d) PCl ₅	
ZnCl ₂		
50. The iodine containing hormone produced by ou		1
a) progesterone c) thyroxine	b) insulin d) adrenalin	
51. p, p' – Dichlorodiphenyltrichloroethane is a		1
a) antiseptic drug	b) degreasing agent	
c) Refrigerant	d) Pesticide	1
52. Which one of the following forms propane nitril a) Propyl bromide + alcoholic KCN	b) Ethyl bromide + alcoholic KCN	1
c) Propyl bromide + alcoholic AgCN	d) Ethyl bromide + alcoholic AgCN	
53. The most common freons in industrial use is ma	anufactured by	1
a) Swarts reaction	b) Fittig reaction d) Wurtz reaction	
c) Sandmeyer reaction 54. Methyl bromide is converted into ethane by hea	•	1
a) Na	b) Al	
c) Cu	d) Zn	
55. Which branched chain isomer of the hydrocarbo substituted alkyl halide?	on with molecular mass 72u gives only one isomer of mono	01
a) Tertiary butyl chloride c) Isohexane	b) Neohexane	
56. In alkyl halide	d) Neopentane	1
a) All of these	b) the carbon atom of C-halogen bond bears	
	a partial positive charge	
c) the halogen atom bears a partial negative charge	d) the carbon-halogen bond of alkyl halide is polarised	
57. Carbon tetra chloride has a dipole moment		1
a) µ= 0	b) μ = 1	
c) μ = 2 58. Ethyl benzene cannot be prepared by	d) µ= 4	1
a) Clemmensen reduction	b) Wurtz – Fittig reaction	1
c) Friedel – Crafts reaction	d) Wurtz reaction	
59. The following compound is ,as per the IUPAC sys CH ₃	stem	1
CH_3 - $\stackrel{ }{\mathrm{C}}$ - C = CH - CH_3		
$\dot{\mathrm{CH}}_3$ $\dot{\mathrm{CH}}_3$		
a) 3, 4, 4 - triethyl pent - 2 - ene c) None of these	b) 2 diethyl, 3 - ethyl pentene	
	d) 2, 2, 3 - triethyl pent - 4 - ene eated with alcoholic solution of potassium hydroxide,	1
a) All of these	b) elimination of halogen atom from α –	
	carbon	
c) elimination of hydrogen atom from eta – carbon	d) alkene is formed as a product	
61. Williamson's synthesis is used for the preparation	on of	1
a) aldehydes	b) ethers	
c) alkyl halides	d) alcohols	
	6	

a) Williamson's synthesis c) Wurtz's synthesis	b) Grignard's synthesis d) Kolbe's synthesis	
73. Dow's process involves		1
a) Nucleophilic substitution c) Nucleophilic addition	b) Electrophilic addition d) Electrophilic substitution	
74. n – propyl bromide on treating with alcoholic K	•	1
a) propanol	b) propene	
c) propyne	d) propane	
75. Preparation of ethers by acid dehydration of sec	condary or tertiary alcohols is not a suitable method.	1
a) alkyl group is hindered.	b) None of these	
c) alkyl group should be unhindered	 d) elimination competes over substitution and alkenes are easily formed 	
76. Phenol on distillation with zinc dust gives		1
a) benzaldehyde c) benzene	b) benzophenone d) benzonic acid	
77. Anisole can be prepared by the action of methyl	iodide on sodium phenate. The reaction is called	1
a) Fittigs reaction c) Williamsons reaction	b) Wurtzs reaction d) Etards reaction	
78. Which of the following compounds will react wi	th sodium hydroxide solution in water?	1
a) C ₆ H ₅ CH ₂ OH	b) (CH ₃) ₃ COH	
c) C ₂ H ₅ OH	d) C ₆ H ₅ OH	
79. Alkenes react with water in the presence of acid	as catalyst to form alcohols.	1
a) nucleophilic attack of water on carbocation	b) Protonation of alkene and carbocation	
c) Deprotonation to form alcohol	d) All of these	
80. Which of the following reagents can be used to a	oxidise primary alcohols to aldehydes?	1
a) All of these	b) CrO ₃ in anhydrous medium	
c) Heat in the presence of Cu at 573K.	d) Pyridinium chlorochromate.	
	Biology	
81. Gene therapy for the first time was clinically d		1
a) Diabetes	b) Rheumatoid fever	
c) ADA deficiency	d) Alzheimer's disease	
82. Which of the following is not a use of transgen	ic animals?	1
a) Obtaining biological product	b) Chemical safety testing	
c) Study of viral disease	d) Study of normal physiology and	
02 Which out of the following is a dramtage of the	development	4
83. Which out of the following is advantage of che	, , ,	1
a) Obtain results in less time c) Testing can be performed easily	b) Testing is long process d) Testing is very cost effective	
84. Probiotics are	u) resting is very cost enective	1
a) cancer inducing microbes	b) safe antibiotics	
c) new kind of food allergens	d) live microbial food supplement	
85. Biopiracy is		1
a) Commercial production of GMO's	b) use of bio resources without proper authorization	
c) Governing research on GMO's	d) monitoring GMO's	
86. The scientists who were succeded in isolating a	antibiotic resistant gene from a plasmid for the first time -	1
a) Boyer and Cohen	b) Mandel and Higa	
c) Sutton and Boveri	d) Morgan and Correns	

87. Bioprospecting includes		1
a) Preserving knowledge of indigenous forms by activists c) Exploitative appreciation of indigenous forms of knowledge by naturalists	b) Exploitative appreciation of indigenous forms of knowledge by commercial actors d) Exploitative appreciation of foreign knowledge by commercial actors	
88. Toxicity of drug on human can be studied by u	sing transgenic animal by	1
a) Introducing complementary gene into organism c) Introducing gene that show change in physiology of organism	b) Inoculating gene that make them more sensitive to toxic substancesd) All of the these	
89. Crystals of Bt toxin produced by some bacteria	do not kill the bacteria themselves because -	1
a) toxin is immature c) bacteria encloses toxin in a special sac. 90. Expand GEAC	b) bacteria are resistant to the toxin d) toxin is inactive	1
a) Genetic engineering approval committee	b) Genetic engineering appearing committee	
c) Gel electrophoresis aligned culture	d) Genetic engineering approval commodity	
91. The cutting out of separated bands of DNA from	the agars gel is called	1
a) Elution	b) Polymerisation	
c) Electrophoresis 92. Viral infection can be treated by	d) Annealing	1
a) lymphocytes	b) Cry genes	-
c) Peptidases	d) Interferons	
93. Using a single template molecule, how many DN in PCR	IA molecules are generated after 10 cycles of amplification	1
a) 1128 molecules	b) 927 molecules	
c) 1024 molecules	d) 1224 molecules	
medicinal crops.	rials and associated culture knowledge related to food and	1
	lized nations are frequently involved in biopiracy.	
a) Both assertion and reason are correct c) Assertion is incorrect but reason is correct	b) Both assertion and reason are incorrect d) Assertion is correct but reason is incorrect	
95. Transgenic animals can used to produce useful		1
a) Insertion of hormone to induce products.	b) Introduction of protein that forms enzymes.	
c) Deletion of portion of DNA of host.	d) Introduction of portion of DNA which code for particular product.	
96. Traditional knowledge related to bio-resources		1
a) Develop modern applications to save time and expenditure	b) Develop old applications to save time and expenditure	
c) Earn money quickly	d) Earn money and publicity	

a) Cosmid	je DNA fragments (> 1000 Kb) b) Bacteriophage lambda	1
c) BAC	d) YAC	
98. The first isolated restriction endonuclease is		1
a) EcoR I	b) Hind II	
c) Alu I	d) Hind III	
99. Role of GEAC is to		1
a) Study the positive effects of GMO's c) Bring new technology	b) Commercialize the new technology d) Take decisions regarding GM research and safety of introducing GM genes	
100. What are commonly called 'mobile genetic e		1
a) Plasmids	b) Transposes	
c) RNA	d) VNTRs	
101. E. coli carry resistance to		1
a) Fluoroquinolone	b) Tetracycline	
c) Ampicillin	d) chloramphenicol	
102. EtBr is a mutagen as		1
a) It is used to treat trypanosmosis	b) It causes mutations	
c) It is carcinogenic	d) It fluoresces under UV	
103. DNA is extracted by		1
a) Chilling treatment	b) Ethanol Precipitation	
c) Heat shock	d) Denaturation	
104. The X-gal will be converted into a coloured p		1
a) When lactose is available	b) Gene coding for B- galactosidase is cleaved	
c) When goi is inserted in the vector at the site coding for B- galactosidase	d) B–galactosidase acts on it	
105. The extraction of DNA from the agrose gel is	s called as	1
a) Isolation	b) Elution	
c) Transformation	d) Ligation	
106. Which of the following is correct sequence of i. Isolation of DNA	of process of recombinant DNA technology-	1
ii. Isolation of desired DNA fragment.		
iii. Fragmentation of DNA by restriction endo	onuclease.	
iv. Transferring of into host		
v. Ligation of DNA fragment into vector vi. Culturing in host cell to get desired produc	rt .	
a) Step v, vi, iv, iii, ii and i c) Step i, iii, ii, v, iv and vi	b) Step i, iv, iii, ii, v and vi d) Step i, ii, iii, iv, v and vi	
107. The separation and purification of recombin		1
a) Tissue culture	b) Extraction	1
c) Downstream processing	d) Hybridisation	
108. Artificial synthesis of DNA without a templa	-	1
a) Watson	b) Meselson	-
c) Geier	d) Khorana	
109. Primers are	.,	1
a) Nucleases	b) Fragments of RNA	
	-,	
c) Palindromic sequences	d) Chemically synthesized oligonucleotides	

a) F DNA	b) Recombinant DNA	
c) Mitochondrial DNA	d) S DNA	
111. 'R' in EcoRI restriction endonuclease denotes		1
a) Sequence of isolation of the enzyme	b) Strain RY13	
c) Species	d) Genus	
112. Nucleosome is seen in		1
a) S. typhimurium	b) Yeast	
c) E.coli	d) H. influenza	
113. In pBr322, B and R stands for		1
a) Burrage and Russell	b) Boliver and Rodriguez	
c) Boteler and Reeves	d) Brew and Rodrick	
114. EtbR fluoresces in UV light because		1
a) It leads to overhangs formation	b) It gets intercalated between the two	
	strands of DNA	
c) It leads to frame shift mutation	d) It causes mutations	
115. The first step of recombinant DNA technology i	nvolves	1
a) Insertion of recombinant DNA in host cell	b) Isolation of genetic material	
c) Amplification of GOI	d) Cutting of DNA at specific location	
116. PCR was discovered by	a) cutting of Divit at specific iscation	1
a) Kary Mullis	b) Stanley Cohen	
c) Hargobind Khorana	d) Herbert Boyer	
117. Sparged stirred tank bioreactor is advantageou	-	1
a) Air bubbles enhance the oxygen transfer	b) It requires less of maintenance	
area	b) it requires less of maintenance	
c) Sparged tank has blades which move fast		
d) Vitamins and minerals are more used up		
in sparged stirred bioreactor		
118. During agarose gel electrophoresis DNA fragm	ents moves towards anode. This is because	1
a) Anode is negatively charged	b) DNA moves in random direction	
c) DNA is positively charged molecules	d) DNA is negatively charged molecules	
119. In Genetic Engineering, to cut DNA at a specific	c site, the enzyme used is	1
a) DNA polymerase	b) ß- galactosidase	
c) RNA polymerase	d) Restriction enzyme	
120. Eco RI acting on goi and vector will produce		1
a) Blunt ends in both	b) Blunt and sticky ends respectively	
c) Sticky and blunt ends respectively	d) Sticky ends in both	

Solution

Class 12 - Physics

Multiple Choice Examination (October-2019)

Section A

1. (d) $\frac{\omega L}{R}$

Explanation:

The quality factor of an inductor is the ratio of its inductive reactance to its resistance at a given frequency, and is a measure of its efficiency.

quality factor = $\frac{\omega L}{R}$

2. (a) $\frac{\pi}{2}$

Explanation: $E = E_0 \sin \omega t$ $i = i_0 \sin \left(\omega t - rac{\pi}{2}
ight)$

3. (d)

 ${B^2\over 2\mu_0}$

Explanation: $U = rac{1}{2\mu_0} B^2 A l$ $rac{U}{V} = rac{B^2}{2\mu_0}$

4. (d)

0.10H

Explanation:

As one coil is wound over the other so that coupling is tight i.e. k = 1 $M=k\sqrt{L_1L_2}=1\sqrt{0.1 imes0.1}=0.1H$

5. (d)

12 A, 5 A

Explanation: when motor is turned on $i = \frac{V}{R} = \frac{120}{10} = 12A$ when it has reached maximum speed, the back emf is 70 V then current will be $i = \frac{V}{R} = \frac{120-70}{10} = 5A$

6. (d)

The maximum value of M is $\sqrt{(L_1L_2)}$

Explanation: $M = k\sqrt{L_1L_2}$

here k is coefficient of coupling. Its maximum value is 1 for tight coupling.

7. (d)

anti-clockwise, anti-clockwise

Explanation:

- a. for a given Periphery the area of a circle is maximum. When a coil takes a circular shape, the magnetic flux linked with the coil increases, so the current induced in the coil will tend to decrease the flux and so it will produce a magnetic field upward. As a result, the current induced in the coil will flow in anti clockwise direction.
- b. When circular coil takes the shape of narrow straight wire, The magnetic flux linked with the coil decreases. So the current induced in the coil will tend to oppose the decrease in magnetic flux. Hence it will produce an upward magnetic field so that the current induced in the coil will flow in anticlockwise direction.
- (d) 8.

50 amp

Explanation:

$$rac{N_s}{N_p} = rac{i_p}{i_s} = rac{V_s}{V_p} = r$$

given that $rac{N_p}{N_s} = rac{1}{25}$
 $\mathrm{i_s}$ = 2 amp
 $rac{25}{1} = rac{i_p}{2}$
 $\mathrm{i_p}$ = 50 amp

r

Zero

Explanation: Induced EMF is zero because flux linked with it remains constant.

10. (a)

 $rac{B\pi a^2\lambda}{MR}\hat{k}$

Explanation:
rotational kinetic energy = work done

$$\frac{1}{2}I\omega^2 = eq$$

 $e = emf$
 $e = \frac{1}{2}B\omega a^2$
average value of emf is
 $\frac{1}{2}e = \frac{1}{2}(\frac{1}{2}B\omega a^2) = \frac{1}{4}B\omega a^2$
now,
 $q = \lambda \times 2\pi R$
 $\frac{1}{2}I\omega^2 = eq$
 $\frac{1}{2}MR^2\omega^2 = 2\pi R\lambda \times \frac{1}{4}B\omega a^2$
 $\omega = \frac{\pi Ba^2\lambda R}{MR^2} = \frac{\pi Ba^2\lambda}{MR}$ considering direction
 $\overrightarrow{\omega} = -\frac{\pi B_0 a^2\lambda}{MR}\hat{k}$

11.

12. (c)

relative position and orientation of the two coils

Explanation:

Mutual inductance of the pair of coils depends upon the geometry of the coils, distance between the coils, relative position and orientation of the coils, number of turns in the coil, permeability of the medium in the coils and degree of coupling.

13. (b)

2 V

Explanation: $e=Lrac{di}{dt}=2 imes10^3 imes10^{-3}=2{
m V}$ (b) $au{
m ln}\,(10/9)$

Explanation: $I = I_0 \left(1 - e^{\frac{-t}{\tau}} \right)$ $I = 0.1I_0$ $e^{\frac{-t}{\tau}} = \frac{9}{10}$ $\frac{t}{\tau} = \ln \frac{10}{9}$ $t = \tau \ln \frac{10}{9}$

15. (a)

14.

Blb, zero

Explanation: $\phi = Blb$ $E = -rac{d\phi}{dt} = 0$

16. (a

(a) $|e|=Ee^{-t/ au}$

Explanation:

$$egin{aligned} &i=i_0\left(1-e^{-t/ au}
ight)\ &rac{di}{dt}=rac{i_0}{ au}e^{-t/ au}\ &rac{di}{dt}=rac{E}{R} imesrac{R}{L}e^{-t/ au}\left(au=rac{L}{R}
ight)\ &|e|=Lrac{di}{dt}=L imesrac{E}{L}e^{-t/ au}=Ee^{-t/ au} \end{aligned}$$

17. (a)

0.435 V

Explanation: $e=rac{d\phi}{dt}=0.2 imes 500 imes 3.14 imes \left(4 imes 10^{-2}
ight)^2 imes \sqrt{rac{3}{2}}=0.435 {
m V}$

18. (b)

soft iron

Explanation: soft iron

19. (d) $\frac{X}{4}$

4

Explanation:

Increasing the frequency will also decrease the opposition offered by a capacitor. This occurs because the number of electrons which the capacitor is capable of handling at a given voltage will change plates more often. As a result, more electrons will pass a given point in a given time (greater current flow). The opposition which a capacitor offers to ac is therefore inversely proportional to frequency and to capacitance. This opposition is called CAPACITIVE REACTANCE. You may say that capacitive reactance decreases with increasing frequency or, for a given frequency, the capacitive reactance decreases with increasing capacitance. The symbol for capacitive reactance is X_c .

 $X=rac{1}{2\pi
u C}$ Let New Reactance After changing frequency and capacitance is X_C'

So
$$X' = \frac{1}{2\pi(2\nu)(2C)}$$

 $\Rightarrow X' = \frac{1}{4(2\pi\nu C)}$
 $\Rightarrow X' = \frac{X}{4}$

20. (b)

13.3 $\mu {
m F}$

Explanation: V = 170volt f = 60Hz i = 0.85A $V = iX_C = i\frac{1}{\omega C} = \frac{i}{2\pi f C}$ Capacitance required $C = \frac{i}{2\pi f V} = \frac{0.85}{2 \times 3.14 \times 60 \times 170} = 13.3 \times 10^{-6} F = 13.3 \mu F$ (b)

21.

0 W,0 W

Explanation:

 $P=VI\cos\phi$

average power consumed by inductor is zero as actual voltage leads the current by $\frac{\pi}{2}$ average power consumed by capacitor is zero as actual voltage lags the current by $\frac{\pi}{2}$ $\left(\cos\frac{\pi}{2}=0\right)$

22. (a)

4800 W, 0.6

Explanation: $R = 3\Omega$ L = 25.48 mH $C = 796 \mu F$ $V_{rms} = 283V$ f = 50Hz Impedance $egin{aligned} X_L &= 2\pi fL = 2 imes 3.14 imes 50 imes 25.48 imes 10^{-3} = 8\Omega \ X_C &= rac{1}{2\pi fC} = rac{1}{2 imes 3.14 imes 50 imes 796 imes 10^{-6}} = 4\Omega \ Z &= \sqrt{R^2 + (X_L - X_C)^2} = \sqrt{3^2 + (8-4)^2} = 5\Omega \end{aligned}$ Power dissipated in the circuit $P = i^2 R$ $i = rac{i_m}{\sqrt{2}} = rac{1}{\sqrt{2}} rac{V_{rms}}{Z} = rac{1}{\sqrt{2}} imes rac{283}{5} = 40A$ $P = i^2 R = 40 \times 40 \times 3 = 4800 W$ power factor $\cos\phi = rac{R}{Z} = rac{3}{5} = 0.6$ (b) 50.0 V

Explanation: $V_R = 30V$ VC = 90V

23.

VL = 50V

$$V = \sqrt{(V_C - V_L)^2 + V_R^2} = \sqrt{(90 - 50)^2 + 30^2} = \sqrt{40^2 + 30^2}$$

V = 50volt

24. (d)

113 Hz, 15mA

Explanation:

$$R = 200\Omega$$

L = 0.4H
 $C = 5\mu F = 5 \times 10^{-6} F$
E = 3volt
current $i = \frac{E}{Z}$

hence current will be maximum when impedance $Z=\sqrt{R^2+\left(X_L-X_C
ight)^2}$ will be minimum.

Z will be minimum when $(X_{C} - X_{L}) = 0$ $X_L = X_C$ hence
$$\begin{split} \omega L &= \frac{1}{\omega C} \\ \omega &= \frac{1}{\sqrt{LC}} \\ 2\pi f &= \frac{1}{\sqrt{LC}} \\ f &= \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\times 3.14\sqrt{0.4\times 5\times 10^{-6}}} = 113 Hz \\ &= 113 Hz$$
current in this case will be $i=rac{E}{Z}=rac{3}{200}=0.015A=15mA$ (if $X_L = X_C$ then Z = R) (c) 1.82 A, 3.2 ms **Explanation:** L = 0.5H $R = 100\Omega$ V = 240 volt f = 50HzPeak voltage $V_0 = V\sqrt{2} = 240\sqrt{2} = 339.41 volt$ angular frequency $\omega = 2\pi f = 2 imes 3.14 imes 50 = 314 rad/\sec$ maximum current in circuit $i_0 = \frac{V_0}{\sqrt{R^2 + \omega^2 L^2}} = \frac{339.41}{\sqrt{(100)^2 + (314)^2 (0.5)^2}} = 1.82A$ $\tan \phi = \frac{\omega L}{R} = \frac{314 \times 0.5}{100} = 1.57$ $\phi = 57.5^\circ = \frac{57.5\pi}{180} rad$ $egin{aligned} \phi &= \omega t \ rac{57.5\pi}{180} &= 314t \ t &= rac{57.5 imes 3.14}{180 imes 314} &= 3.19 imes 10^{-3}s = 3.2ms \end{aligned}$

26. (a)

25.

Less resistance

Explanation: capacitive reactance $X_C = rac{1}{\omega C} = rac{1}{2\pi f C}$ $X_C \propto \frac{1}{C}$

hence, for high frequency capacitor offers less resistance.

27. (a)

230 V, 50 Hz

Explanation:

India uses ac power supply of frequency 50 Hz and voltage 230V while America uses ac supply of frequency 60Hz and voltage 110V.

28. (c)

1.06 A

Explanation: maximum value of current $i_0 = 1.5A$ root-mean-square current $i_{rms} = rac{i_0}{\sqrt{2}} = rac{1.50}{\sqrt{2}} = 1.06A$

90°

Explanation: If only inductor is present in circuit then R = 0 $\tan \phi = \frac{X_L}{R} = \frac{X_L}{0} = \infty$ hence, phase angle $\phi = 90^\circ$

30. (d)

31.

inductor, 0.133 H

Explanation: For power factor to be unity, $\cos \phi = 1$ $\phi = 0^{\circ}$ it means that $\omega L = \frac{1}{\omega C_{eff}}$ $L = \frac{1}{\omega^2 C_{eff}}$ impedance $Z = \sqrt{R^2 + \left(\frac{1}{\omega C_{eff}}\right)^2}$ $C_{eff} = \frac{1}{\omega \sqrt{Z^2 - R^2}}$ $\cos \phi = \frac{R}{Z}$ $R = Z \cos \phi$ $C_{eff} = \frac{1}{\omega \sqrt{Z^2 - Z^2 \cos^2 \phi}} = \frac{1}{\omega Z \sqrt{1 - \cos^2 \phi}}$ $L = \frac{1}{\omega^2 C_{eff}} = \frac{Z \sqrt{1 - \cos^2 \phi}}{\omega} = \frac{60 \sqrt{1 - (0.72)^2}}{2 \times 3.14 \times 50}$ L = 0.133H (b) 31.8 V

Explanation: maximum voltage across the terminals V = 45 volt Root-mean-square potential difference

$$V_{rms}=rac{V}{\sqrt{2}}=rac{45}{\sqrt{2}}=31.8volt$$

32. (a) 159 Hz

Explanation:

$$L = 20mH = 20 \times 10^{-3}H$$

 $C = 50\mu F = 50 \times 10^{-6}F$
frequency
 $f = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2 \times 3.14\sqrt{20 \times 10^{-3} \times 50 \times 10^{-6}}}$
f = 159Hz
(a)

33. (a

Explanation: Phase factor in series LCR circuit $\tan \phi = \frac{X_L - X_C}{R}$ at resonance $X_L = X_C$ $\tan \phi = \frac{X_L - X_C}{R} = 0$ $\phi = 0^\circ$

34. (b)

0.831

Explanation:

$$R = 300\Omega$$

 $X_L = 500\Omega$
 $X_C = 300\Omega$
power factor $\cos \phi = \frac{R}{Z}$
 $Z = \sqrt{R^2 + (X_L - X_C)^2} = \sqrt{300^2 + (500 - 300)^2} = 100\sqrt{13}$
 $\cos \phi = \frac{300}{100\sqrt{3}} = 0.831$

35. (d)

zero V

Explanation:

average value of AC voltage for a half cycle is positive and similarly, the mean value of AC voltage for other half cycle is negative.

Average potential difference between the two terminals for complete full cycle $V_{av}=(0.637V_0)+(-0.637V_0)=0$

36. (c)

161 V

Explanation:

$$R = 300\Omega$$

 $X_L = 500\Omega$
 $X_C = 300\Omega$
 $P_{av} = 60W$
 $Z = \sqrt{R^2 + (X_L - X_C)^2} = \sqrt{300^2 + (500 - 300)^2} = 100\sqrt{3}$
 $P_{av} = V_{rms} \times i_{rms} \times \cos \phi$
 $i_{rms} = \frac{V_{rms}}{Z}$

$$\begin{aligned} \cos \phi &= \frac{R}{2} \\ P_{av} &= \frac{(V_{rm})^2}{Z} \times \frac{R}{Z} = \frac{(V_{rm})^2 R}{Z^2} \\ 00 &= \frac{(V_{rms})^2 \times 300}{100\sqrt{3100\sqrt{13}}} \\ V_{rms} &= \sqrt{\frac{60 \times 100 \times 13}{3}} = 161V \end{aligned}$$
37. (b)
3.59 × 10⁷ rad/s
Explanation:
for capacitor,
 $A &= 4.5 \times 4.5 \times 10^{-4} m^2$
 $d &= 8 \times 10^{-3} m$
 $C &= \frac{4c_0}{d} = \frac{4.5 \times 4.5 \times 10^{-4} \times 8.85 \times 10^{-12}}{8 \times 10^{-3}} = 224 \times 10^{-14} F$
self inductance of solenoid
 $L &= \frac{\mu_{c} A^{N}}{l}$
 $A &= \pi r^2 = 3.14 \times \left(\frac{0.5}{2} \times 10^{-2}\right)^2 = 19.625 \times 10^{-6} m^2$
 $N = 125 \times 9 = 1125$
 $l = 9 \times 10^{-2} m$
 $\mu_0 = 4\pi \times 10^{-7}$
 $L &= \frac{4 \times 3.14 \times 10^{-7} \times 19.625 \times 10^{-6} \times 1125 \times 112^5}{9 \times 10^{-2} m^2} = 346.6 \times 10^{-6} H$
resonant angular frequency
 $\omega &= \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{224 \times 10^{-14} \times 346.6 \times 10^{-6}}} = 3.59 \times 10^7 rad/s$
38. (c)
193 Hz
Explanation:
 $V = 45 \text{ volt}$
 $L = 9.5 \text{mH}$
 $i = 3.9A$
 $f = ?$
 $V &= iX_L = i \times \omega L = i \times 2\pi fL$
Frequency of the source
 $f = \frac{V}{\sqrt{2\pi}} = \frac{4.5}{3.9 \times 2.3.14 \times 9.5 \times 10^{-4}} = 0.193 \times 10^{3}$
 $f = 193 \text{Hz}$
39. (d)
400
Explanation:
 $N_p = \text{no. of turns in primary coil = 4000}$
 $N_s = \text{no. of turns in primary coil = 4000}$

 $V_{p} = \text{input voltage} = 2300 \text{ V}$ $V_{s} = \text{output voltage} = 230 \text{ V}$ $\frac{V_{s}}{V_{p}} = \frac{N_{s}}{N_{p}}$ $\frac{230}{2300} = \frac{N_{s}}{4000}$ $N_{s} = 400$

$$\frac{100}{2300} = \frac{100}{400}$$

N_s = 400

40. (a) 146.0 Ω Explanation: $R = 115\Omega$ $C = 1.25\mu F = 1.25 \times 10^{-6} F$ $L = 4.5mH = 4.5 \times 10^{-3} H$ resonant angular frequency $\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{4.5 \times 10^{-3} \times 1.25 \times 10^{-6}}} = \frac{1}{7.5 \times 10^{-5}}$ given that the angular frequency of the ac source $\omega = 2\omega_0 = \frac{2}{7.5 \times 10^{-5}} = 26666.6 rad/s$ impedance

$$egin{split} Z &= \sqrt{R^2 + \left(\omega L - rac{1}{\omega C}
ight)^2} = \sqrt{115^2 + \left[(26666.6 imes 4.5 imes 10^{-3}) - \left(rac{1}{26666.6 imes 1.25 imes 10^{-6}}
ight)
ight]^2} \ Z &= 146 \Omega \end{split}$$

Solution

Class 12 - Chemistry

Multiple Choice Test (October-2019)

Section A

41. **(c)**

Sandmeyer's reaction

Explanation:

 $C_6H_5N_2^+Cl^- + Cu_2Cl_2/HCl \to C_6H_5Cl.$

Mixing the solution of freshly prepared diazonium salt with cuprous chloride or cuprous bromide results in the replacement of the diazonium group by –Cl or –Br. This is called sandmeyer's reaction.

42. (a)

 $Cl^- < Br^- < I^-$

Explanation:

Nucleophilicity means the tendency of a nucleophile to attack a center of positive charge. As size of the nucleophile increases, its basicity decreases and hence its nucleophilicity increases. As we move down the group 17 size of the anions increases and thus the nucleophilicity increases as $Cl^- < Br^- < I^-$

43. (d)

a mixture of two different alkyl halides has to be used

Explanation:

Alkyl halides on treatment with sodium metal in dry ethereal (free from moisture) solution give higher alkanes. This reaction is known as Wurtz reaction and is used for the preparation of higher alkanes containing even number of carbon atoms. Many side products are formed when two different alkyl halides are used. So this method is not preferred to prepare alkanes having odd number of C atoms.

44. **(c)**

major product is paranitroanisole

Explanation:

OCH₃ is activator and o/p director out of which para is major product.

45. (a)

higher melting point and lower solubility

Explanation:

The para-isomers of dihalobenzenes are high melting as compared to their ortho- and meta-isomers. It is due to symmetry of para-isomers that fits in crystal lattice better as compared to ortho- and meta-isomers. These compounds have lower solubility in water but higher solubility in organic solvents.

46. (c)

1 - chloro - 4 - (2 - methylpropyl) benzene

Explanation:

Here we have selected the benzene ring as the parent compound with chloro group at position 1 and 2methylpropyl group present at the position 4. Here halogen has been numbered in preference to the alkyl substituent. Thus the correct IUPAC name would be 1-chloro-4-(2-methylpropyl) benzene.

47. (a)

both gets slowly oxidised by air in presence of light and form a poisonous gas

Explanation:

In presence of light choloroform slowly oxidizes in air to form phosgene (carbonyl chloride COCl₂), which is poisonous gas. It is therefore stored in closed dark coloured bottles completely filled so that air is kept out.

$$2CHCl_3 + O_2
ightarrow 2COCl_2 + 2HCl$$

48. (d)

2 – chloro 2 methyl propane

Explanation:

Longest chain will be of three carbon to which Cl and CH₃ will be attached at 2 position.

49. (a)

 $\ensuremath{\mathsf{SOCl}}_2$ in presence of pyridine

Explanation:

The hydroxyl group of an alcohol is replaced by halogen on reaction with concentrated halogen acids, phosphorus halides or thionyl chloride. Thionyl chloride (SOCl₂) is preferred because the other two

products SO_2 and HCl are escapable gases. Hence the reaction gives pure alkyl halides.

$$ROH + SOCl_2
ightarrow RCl + SO_2(g) + HCl(g)$$

50. (c)

thyroxine

Explanation:

Our body produces iodine containing hormone, thyroxine, the deficiency of which causes a disease called goiter

51. (d)

Pesticide

Explanation:

p,p' –**Dichlorodiphenyltrichloroethane** (**DDT**) is a colorless, tasteless, and almost odorless known for its pesticidal properties and environmental impacts.

52. (b)

Ethyl bromide + alcoholic KCN

Explanation: $CH_3CH_2Br + KCN \rightarrow CH_3CH_2CN + KBr$

53. (a)

Swarts reaction

Explanation:

The chlorofluorocarbon compounds of methane and ethane are collectively known as freons. They are extremely stable, unreactive, non-toxic, non-corrosive and easily liquefiable gases. Freon 12 (CCl₂F₂) is one of the most common freons in industrial use. It is manufactured from tetrachloromethane by Swarts reaction

54. (a)

Na

Explanation: 2CH₃Br + 2Na \rightarrow CH₃CH₃ + 2NaBr

55. (d)

Neopentane

Explanation:

Neopentane has all same type of hydrogen and has molecular weight 72u

56. (a)

All of these

Explanation:

Since halogen atoms are more electronegative than carbon, the carbon-halogen bond of alkyl halide is polarised; the carbon atom bears a partial positive charge whereas the halogen atom bears a partial negative charge.

57. (a)

μ= 0

Explanation: CCl₄ is symmetrical hence dipole moment is zero.

58. (d)

Wurtz reaction

Explanation:

Alkyl halides react with sodium in dry ether to give hydrocarbons containing double the number of carbon atoms present in the halide. This reaction is known as Wurtz reaction. $2RX + 2Na \rightarrow R - R + 2NaX$

So C₆H₅CH₂CH₃ is not prepared by Wurtz reaction.

59. (a)

3, 4, 4 - triethyl pent - 2 - ene

Explanation:

Longest chain contains double bond.

60. (a)

All of these

Explanation:

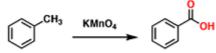
When a haloalkane with β -hydrogen atom is heated with alcoholic solution of potassium hydroxide, there is elimination of hydrogen atom from β -carbon and a halogen atom from the α -carbon atom. As a result, an alkene is formed as a product. Since β -hydrogen atom is involved in elimination, it is often called β -elimination.

61. (b)

ethers

Explanation:

The Williamson ether synthesis is an organic reaction, forming an ether from an organohalide and deprotonated alcohol (alkoxide). This reaction was developed by Alexander Williamson in 1850. Typically it involves the reaction of an alkoxide ion with a primary alkyl halide via an S_N² reaction.



Benzoic acid

Explanation:

Oxidation of aromatic alkanes with KMnO4 to give carboxylic acids.

Description: Treatment of an alkylbenzene with potassium permanganate results in oxidation to give the benzoic acid.

Alkylbenzene

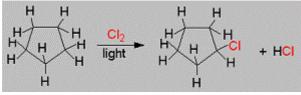
Benzoic acid

Key bonds formed	Key bonds broken
C-O(π)	С-Н
C-0	С-Н
С-ОН	С-Н

63. (b)

(iii) < (ii) < (i)

Explanation:


The nitro-group is an electron-withdrawing group. The presence of this group in the para position decreases the electron density on the benzene ring. which in turn decreases the electron density on the oxygen of O-H bond. As a result, it is easier to lose a proton. Also, the p-nitrophenoxide ion formed after the loss of protons is stabilized by resonance. Hence, ortho nitrophenol is a stronger acid. On the other hand, methoxy group is an electron-releasing group. Thus, it increases the electron density on the oxygen of the O-H bond and hence, the proton cannot be given out easily. For this reason, para-nitrophenol is more acidic than para-methoxyphenol.

64. (d)

Cyclopentane

Explanation:

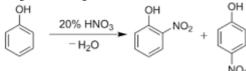
Cyclopentane is nearly inert chemically, they react with halogens in the presence of light through the substitution of one hydrogen atoms. Since the cyclic structure confers a high degree of symmetry on the molecule, only one monochloro cyclopentane is possible.

65. (b)

a primary alcohol

Explanation:

When –CH₂OH group is replaced by –COOH group then only molecular wt will increase by 14units.


66. (a)

a mixture of ortho and para nitro phenols

Explanation:

Nitration of phenols: Phenols upon treatment with dilute nitric acid undergoes nitration at low temperature (298 K) to give a mixture of ortho and para nitrophenols. The mixture formed is further separated into ortho and para nitrophenols by steam distillation on the basis of their volatility. Due to intramolecular and intermolecular hydrogen bonding, ortho nitrophenols are lesser volatile in comparison

to para nitrophenols which involves only intermolecular hydrogen bonding.

67. (a)

 $(CH_3)_2CHOH$

Explanation:

Secondary alcohol on oxidation forms ketone which reacts with hydrazine bus doesnot gives silver mirror test.

68. (b)

b>d>c>a>e

Explanation:

The acidity of phenols depends on the group attached to the benzene ring. Groups showing electron withdrawing nature i.e. -I and -R effect will increase the acidity while group showing electron donating nature like +I and +R effect will decrease acidity. Resonance effect of group (-R or +R) attached to benzene system is operative only ortho and para position of the benzene system, while at meta position only inductive effect is operative.

Clearly, b will be most acidic because -NO₂ group attached will show strong -R effect. In d, -NO₂ is present at meta position where only -I is effective. -I effect of -NO₂ is more than -OCH₃ group so, d will be more acidic than c, e will be least acidic as -OCH₃ group is attached at para position and shows +R effect.

69. (b)

Secondary alcohol

Explanation:

A secondary alcohol is a compound in which a hydroxy group, –OH, is attached to a saturated carbon atom which has two other carbon atoms attached to it.

$$H H H H H H H$$

 $H - \overset{|}{C} - H$
 $H H OH H$

70. (a)

methoxyethane

Explanation:

Ether react with HI to form alcohol and alkyl iodide. Alcohol on oxidation will give iodoform test.

71. (b)

b > d > c > a > e

Explanation:

B will be most acidic because of -M effect of NO₂. Followed by d, in d -I effect of NO₂ operates only. Then c will come as -I of OCH ₃ < - I of NO₂ and least will be e because of +M effect of OCH₃ that will decrease the acidity.

72. (a)

Williamson's synthesis

Explanation:

Williamson's synthesis: When an alkyl halide reacts with sodium alkoxide, ether is formed. This reaction is known as Williamson's synthesis. The reaction generally follows S_N^2 mechanism for primary alcohols.

$$R-X+R'-\ddot{O}\overset{+}{Na}
ightarrow R-\ddot{O}-R'+Na \; X$$

 $Williamson's \ synthesis$

73. (a)

Nucleophilic substitution

Explanation:

The Dow process is the electrolytic method of bromine extraction from brine, and was Herbert Henry Dow's second revolutionary process for generating bromine commercially.

Dow's Process may also refer to the hydrolysis of chlorobenzene in the preparation of phenol. Benzene can be easily converted to chlorobenzene by electrophilic aromatic substitution. It is treated with dilute sodium hydroxide at 350 °C and 300 bar to convert it to sodium phenoxide, which yields phenol upon acidification. This reaction is quickened manifold in the presence of electron withdrawing groups (such as -NO₂) ortho and/or para to the halogen group.

74. (b)

propene

Explanation:

Alkenes can be prepared from alkyl halides by treatment with alcoholic solution of caustic potash (KOH) at about 353-363 K. This reaction is known as dehydrohalogenation of alkyl halides.

$$CH_{3}CH_{2}CH_{2}Br + KOH \xrightarrow{C_{2}H_{5}OH} CH_{3}CH = CH_{2} + KBr + H_{2}O$$

$$\xrightarrow{n-\text{Pr}opyl bromide} CH_{3}CH = CH_{2} + KBr + H_{2}O$$

75. (d)

elimination competes over substitution and alkenes are easily formed

Explanation:

The formation of ethers by dehydration of the alcohol is a bimolecular reaction (S_N^2) involving the attack of an alcohol molecule on a protonated alcohol molecule. In the method, the alkyl group should be

unhindered. In case of secondary or tertiary alcohols, the alkyl group is hindered. As a result, elimination dominates substitution as 3° carbocation is more stable.

Hence, in place of ethers, alkenes are formed.

76. (c)

benzene

Explanation:

Phenol is reduced to benzene when it is distilled with zinc dust or its vapour is passed over granules of zinc at 400°C.

$$\rightarrow$$
 + Zn \rightarrow \rightarrow + ZnO

77. (c)

Williamsons reaction

Explanation:

The reaction of an alkyl halide with sodium alkoxide to give ether (alkoxy alkane), is known as Williamson's synthesis. In this reaction, an ether (anisole) is prepared by the action of alkyl halide (methyl iodide) on sodium alkoxide (sodium phenate), so it is an example of Williamson's synthesis.

78. (d)

 C_6H_5OH

Explanation:

Phenol is more soluble in NaOH than in water is because phenol is slightly more acidic than alcohols. The Ka for phenol in water is 1e-10 which is not very strong. But by mixing with NaOH, it causes the phenol to release the H+ to form sodium phenoxide.

79. (d)

All of these

Explanation:

The addition of water to an alkene in the presence of a catalytic amount of strong acid leads to the formation of alcohols (hydroxy-alkanes).

$CH_2 = CH_2 + H_2O \xrightarrow{H^+} CH_3CH_2OH$

This reaction proceeds via a standard carbocation mechanism and follows the Markovnikov rule. The mechanism for the addition of water to ethene follows.

1. The hydrogen ion is attracted to the π bond, which breaks to form a σ bond with one of the doublebonded carbons. The second carbon of the original double-bonded carbons becomes a carbocation.

$$CH_2 \stackrel{\bullet}{=} CH_2 + H^* \longrightarrow CH_3 CH_2$$

ethene

2. An acid-base reaction occurs between the water molecule and the carbocation, forming an oxonium ion.

$$CH_3\dot{CH}_2 + H - \dot{R} - H \longrightarrow CH_3CH_2\dot{CH}$$

water oxonium ion

3. The oxonium ion stabilizes by losing a hydrogen ion, with the resulting formation of an alcohol.

80.

All of these

(a)

Explanation:

Oxidation of alcohols to aldehydes is partial oxidation; aldehydes are further oxidized to carboxylic acids. Conditions required for making aldehydes are heat and distillation.

In aldehyde formation, the temperature of the reaction should be kept above the boiling point of the aldehyde and below the boiling point of the alcohol. Reagents useful for the transformation of primary alcohols to aldehydes are normally also suitable for the oxidation of secondary alcohols to ketones. These include:

- Chromium-based reagents, such as Collins reagent (CrO₃·Py₂)
- PDC or PCC.
- Heat in the presence of Cu at 573K.

Solution

Class 12 - Biology

Multiple Choice Examination (October-2019)

Section A

81. **(c)**

ADA deficiency

Explanation:

A four-year old girl became the first gene therapy patient on September 14, 1990 at the NIH Clinical Center. She has adenosine deaminase (ADA) deficiency, a genetic disease which leaves her defenseless against infections. White blood cells were taken from her, and the normal genes for making adenosine deaminase were inserted into them.

The corrected cells were reinjected into her. Dr. W. French Anderson helped develop this landmark clinical trial when he worked at the National Heart, Lung, and Blood Institute

82. (c)

Study of viral disease

Explanation:

Transgenic animals are developed to study normal physiology and development, vaccine testing, chemical safety testing, obtaining biological product etc. These animals are not used to study viral disease.

83. (a)

Obtain results in less time

Explanation:

Transgenic animals are made to carry gene that make them sensitive to toxic substance than nontransgenic animals and exposed to toxic substance. Toxicity testing in transgenic animals allows us to obtain results in less time.

84. **(d)**

live microbial food supplement

Explanation:

Probiotics are live microorganisms that may be able to help prevent and treat some illnesses. Promoting a healthy digestive tract and a healthy immune system are their most widely studied benefits at this time. These are also commonly known as friendly, good, or healthy bacteria.

85. (b)

use of bio resources without proper authorization

Explanation:

Biopiracy describes a practice in which indigenous knowledge of nature, originating with indigenous peoples, is used by others for profit, without permission from and with little or no compensation or recognition to the indigenous people themselves.

86. (a)

Boyer and Cohen

Explanation:

Genetic modification caused by human activity has been occurring since around 12,000 BC, when humans first began to domesticate organisms. Genetic engineering as the direct transfer of DNA from one organism to another was first accomplished by Herbert Boyer and Stanley Cohen in 1972.

87. (b)

Exploitative appreciation of indigenous forms of knowledge by commercial actors

Explanation:

Bioprospecting is the process of discovery and commercialization of new products based on biological resources. Despite indigenous knowledge being intuitively helpful, bioprospecting has only recently begun to incorporate such knowledge in focusing screening efforts for bioactive compounds.

Bioprospecting may involve biopiracy, the exploitative appropriation of indigenous forms of knowledge by commercial actors, and also includes the search for previously unknown compounds in organisms that have never been used in traditional medicine before.

88. (b)

Inoculating gene that make them more sensitive to toxic substances

Explanation:

Chemical safety testing: This is known as toxicity/safety testing. The procedure is the same as that used for testing toxicity of drugs. Transgenic animals are made that carry genes which make them more sensitive to toxic substances than non-transgenic animals. They are then exposed to the toxic substances and the effects studied. Toxicity testing in such animals will allow us to obtain results in less time.

89. (d)

toxin is inactive

Explanation:

In bacteria, the toxin is present in an inactive form, called prototoxin, which gets converted into active form when it enters the body of an insect.

90. (a)

Genetic engineering approval committee

Explanation:

The Genetic Engineering Approval Committee (GEAC) is the apex body constituted in the Ministry of Environment and Forests under 'Rules for Manufacture, Use, Import, Export and Storage of Hazardous Microorganisms/Genetically Engineered Organisms or Cells 1989', under the Environment Protection Act, 1986.

91. (a)

Elution

Explanation:

In gel-electrophoresis, the separated bands of DNA are cut out from the agarose gel and extracted from the gel piece. This step is called elution.

92. (d)

Interferons

Explanation:

Interferons can be sued to treat viral infection as interferon are proteins made and released by host cells in response to presence of pathogen as viruses, bacteria or tumor cells.

93. (c)

1024 molecules

Explanation:

Each cycle doubles the number of DNA molecules. Using automated equipment, each cycle of replication can be completed in less than 5 minutes. After 10 cycles, what began as a single molecule of DNA has been amplified into $2^{10} = 1024 \ copies$

94. (a)

Both assertion and reason are correct

Explanation:

Biopiracy describes a practice in which indigenous knowledge of nature, originating with indigenous peoples, is used by others for profit, without permission from and with little or no compensation or recognition to the indigenous people themselves. Multinational companies involved in food crops and medicinal crops and industrialized nations are frequently involved in biopiracy.

95. (d)

Introduction of portion of DNA which code for particular product.

Explanation:

Some transgenic animals are produced for specific economic traits. Transgenic animals can used to produce useful products by Introduction of portion of DNA which code for particular product. For example, transgenic cattle were created to produce milk containing particular human proteins, which may help in the treatment of human emphysema.

96. (a)

Develop modern applications to save time and expenditure

Explanation:

Most of the industrialised nations are rich financially but poor in biodiversity and traditional knowledge. In contrast the developing and the underdeveloped world is rich in biodiversity and traditional knowledge related to bio-resources. Traditional knowledge related to bio-resources can be exploited to develop modern applications and can also be used to save time, effort and expenditure during their commercialisation.

97. (d)

YAC

Explanation:

Yeast artificial chromosome (YAC) is the vector of choice used to clone very large DNA fragment (>1000kb) to prepare genomic library. YAC vector is like a chromosome as it has ARS sequences, centromere sequence and telomere at the two ends to give stability.

98. (b)

Hind II

Explanation:

In 1970, Hamilton O. Smith, Thomas Kelly and Kent Wilcox isolated and characterized the first type II restriction enzyme, Hind II, from the bacterium Haemophilus influenzae.

99. (d)

Take decisions regarding GM research and safety of introducing GM genes

Explanation:

The GEAC is also responsible for approval of proposals relating to release of genetically engineered organisms and products into the environment including experimental field trials (Biosafety Research Level trial-I and II known as BRL-I and BRL-II).

100. (b)

Transposes

Explanation:

Transposable elements are discrete DNA segments that can move between nonhomologous positions within a genome and have been found in virtually all organisms examined. The recombination pathway by which such elements move is called transposition. Most elements encode a transposase, that is, the recombinase that executes the DNA breakage and joining reactions that underlie transposition, as well as special recombination sequences at the ends of the transposon arranged as inverted terminal repeats that

include transposase binding sites; elements lacking a transposase can often be mobilized by the transposase from another cognate element. The insertion of a transposable element into a new insertion site alters the host DNA at that point and often results in a mutation through gene disruption.

101. (a)

Fluoroquinolone

Explanation:

Bacterium E.coli carries resistance to antibiotic Fluroquitnolone due to presence of plasmid having extra nuclear DNA.

102. (b)

It causes mutations

Explanation:

EtBR or Ethidium Bromide is widely used nucleic acid stain and very strong mutagen and carcinogen. It causes mutation that cause variation or introduction of new traits.

103. (b)

Ethanol Precipitation

Explanation:

The piece of DNA obtained by gel electrophoresis contains agrose gel also. Ethanol precipitation is a commonly used technique for concentrating and de-salting nucleic acids (DNA or RNA) preparations in aqueous solution. The basic procedure is that salt and ethanol are added to the aqueous solution, which forces the precipitation of nucleic acids out of solution.

124. (d)

B–galactosidase acts on it

Explanation:

X-gal is an analog of lactose, and therefore may be hydrolyzed by the β -galactosidase enzyme which cleaves the β -glycosidic bond in D-lactose.

X-gal, when cleaved by β -galactosidase, yields galactose and 5-bromo-4-chloro-3-hydroxyindole. The latter then spontaneously dimerizes and is oxidized into 5,5'-dibromo-4,4'-dichloro-indigo, an intensely blue product which is insoluble. X-gal itself is colorless, so the presence of blue-colored product may therefore be used as a test for the presence of active β -galactosidase.

This easy identification of an active enzyme allows the gene for β -galactosidase (the lacZ gene) to be used as a reporter gene in various applications.

105. (b)

Elution

Explanation:

The extraction of specific bands of DNA from agarose gels in which they are separated through electrophoresis is known as elution. There are many methods for eluting DNA from a piece of agrose.

106. (c)

Step i, iii, ii, v, iv and vi

Explanation:

The correct sequences of process of recombinant DNA technology are Isolation of DNA, fragmentation of DNA by restriction endonuclease, isolation of desired DNA fragment, ligation of DNA fragment into vector, transferring of into host and culturing in host cell to get desired product.

107. (c)

Downstream processing

Explanation:

Downstream processing is the separation and purification of recombinant protein product. Downstream processing and quality control testing vary for different products.

108. (d) Khorana

Explanation:

Artificial Synthesis of DNA Without a Template:

Hargobind Khorana and his colleagues produced the first synthetic DNA in 1965 by purely chemical means. They synthesised the gene coding for yeast alanine tRNA which needed only 77 base pairs. Unfortunately, this gene did not function.

Khorana and his associates, in 1979, synthesized the gene coding for tyrosine tRNA of E. coli. This gene had 207 nucleotide pairs. It functioned in combination with a phage DNA. When introduced into E. coli genes responsible for the formation of hormones somatotrophin and insulin have also been artificially synthesized.

109. (d)

Chemically synthesized oligonucleotides

Explanation:

Primers are chemically synthesized oligonucleotides that are complementary to the regions of DNA and the enzyme DNA polymerase.

110. (b) Recombinant DNA

Explanation:

Recombinant DNA is the general name for taking a piece of one DNA, and and combining it with another strand of DNA. Thus, the name recombinant! Recombinant DNA is also sometimes referred to as "chimera." By combining two or more different strands of DNA, scientists are able to create a new strand of DNA. The most common recombinant process involves combining the DNA of two different organisms

111. (b)

Strain RY13

Explanation:

The commonly used notation for restriction endonucleases is of the form "vwxyz", where "vwx" names the life form (bacteria) where this restriction endonuclease may be found, "y" names the strain (and is optional), and "z" (in Roman numerals) indicates different restriction endonucleases in the same life form (bacteria).

Thus for example, "EcoRI" means that the restriction endonuclease is found in Escherichia coli ("Eco"); strain RY13 ("R"), restriction endonuclease number "I".

112. (b)

Yeast

Explanation:

The nucleosome is the fundamental subunit of chromatin. Nucleosome is clearly seen in fungus called Yeast.

113. (b)

Boliver and Rodriguez

Explanation:

Plasmid vector Pbr322 is a multipurpose cloning vector. In pBr322, B and R stand for Boliver and Rodriguez who discovered this cloning vector.

114. (b)

It gets intercalated between the two strands of DNA

Explanation:

Ethidium bromide is a molecule commonly used to visualize DNA in agarose gel electrophoresis experiments. It both binds to DNA and fluoresces under the proper conditions. Ethidium bromide is known

as an intercalating agent. The flat structure of ethidium bromide allows it to intercalate, or insert, between nitrogenous bases of a DNA molecule. This interaction is especially useful because of ethidium bromide's second characteristic. When it is exposed to ultraviolet light, ethidium bromide fluoresces. Thus, this chemical provides both a means of tagging DNA molecules and a means of visualizing them.

115. (b)

Isolation of genetic material

Explanation:

The first step of recombinant DNA technology involves isolation of genetic material. This is performed by using enzymes that hydrolyzes the outer covering of cell as cellulase, chitinases pectinase etc.

116. (a)

Kary Mullis

Explanation:

Polymerase chain reaction (PCR) was discovered by Kary Mullis. PCR technique is used to amplify the DNA segments to obtain large number of identical copies.

117. (a)

Air bubbles enhance the oxygen transfer area

Explanation:

Bioreactors are used to obtain biological products on large scale continually for commercial purpose. The sparged stirred tank bioreactor is advantageous over the simple stirred tank bioreactor as there is increased surface area for oxygen transfer. The bubbles increase the oxygen transfer area.

118. (d)

DNA is negatively charged molecules

Explanation:

To separate DNA using agarose gel electrophoresis, the DNA is loaded into pre-cast wells in the gel and a current applied. The phosphate backbone of the DNA (and RNA) molecule is negatively charged, therefore when placed in an electric field, DNA fragments will migrate to the positively charged anode.

119. (d)

Restriction enzyme

Explanation:

In genetic engineering, restriction enzymes (or restriction endonucleases) are used to cut DNA into smaller fragments. The cuts are always made at specific nucleotide sequences. Different restriction enzymes recognise and cut different DNA sequences. These fragments are joined together using another enzyme called ligase.

120. (d)

Sticky ends in both

Explanation:

Restriction enzymes, such as EcoRI, are used in a wide variety of molecular genetics techniques including cloning, DNA screening and deleting sections of DNA in vitro. Restriction enzymes, like EcoRI, that generate sticky ends of DNA are often used to cut DNA prior to ligation, as the sticky ends make the ligation reaction more efficient.